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Cancer is a leading cause of death in the world. Mathematical and computer models may 
improve current treatments by helping scientists better understand this disease. They may 

also introduce new aspects of therapy by predicting the result of changes in 

microenvironment of the tumor or the interaction between different types of cells. In this 

paper, a square lattice Cellular Automata model of tumor-immune cell interaction is 

presented. The state of each tumor cell can be updated according to stochastic rules related 

to its previous state and the states of its Moore neighborhood. The growth fraction and 
necrotic fraction are used as output parameters beside a 2-D graphical growth presentation. 

Our results show that entering immune system not only improves the compatibility of the 

model with physiological reality which show the impact of immune cells on tumor invasion, 

but also the results of output parameters are fitter to experimental data. 

 

1. Introduction 

Accounting for 8.2 million deaths in 2012, cancer is a 
leading cause of death worldwide. It is expected that annual 

cancer cases will rise from 14 million in 2012 to 22 within 

the next two decades [1]. These numbers are expected to 

grow with time as populations get older in developing 

countries and better cancer treatments are promoting longer 

longevity. Therefore, cancer research is a field where most 

money is spent in today’s research [2]. Cancer mortality can 

be reduced if cases are detected and treated early. Since the 

treatment of cancers is a challenging issue, different attempts 

should be considered. Study of tumor growth seems to be 

useful in understanding cancer in morphological and 

functional properties [3]. 

Mathematical and computer modeling may lead to a 

greater understanding of the dynamics of cancer progression 

in patients [4]. The understanding of dynamics of formation 

and cancer growth can give researchers opportunities to try 

new prevention and treatment solutions [2]. The key 

characteristics lead to propose and develop a mathematical 

model are shown in the Figure 1. As it can be seen we 

emphasized on studying and gathering the knowledge of the 

system we are going to describe, trying to formulize it by 

using computational hypothesis, and then making 
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predictions by introducing new concepts. The control of the 

interacting elements in a tumor is a difficult task in an 

experimental work. It is also difficult to predict the situation 

of tumor growth since it is a biological complex system. 

Hence, mathematical modeling using different methods 

could be helpful in understanding important features of such 

a complex system [3]. Using Ordinary or Partial Differential 

Equations (ODEs or PDEs) is one of these methods. Other 

approaches like Monte Carlo (MC) and Cellular Automata 

(CA) in which deterministic or probabilistic methods are 

employed to obtain a final pattern are also useful. 

 

 
Figure 1.  Properties of a mathematical model 

 

Since there is not sufficient information about cell-cell 

and cell-environment interaction, deterministic prediction of 
the evolution of a tumor seems impossible. Even in in vitro 
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experiments with well controlled microenvironments, 

stochastic effects are always present and make prediction 

difficult [5]. Therefore, most researchers treat the cell 

dynamic as a stochastic dynamic [6].  

Computer simulations have been used to study in silico 

in some of the processes thought to lead to the formation of 
cancerous masses and have attained good results in 

explaining some facts observed in vivo and in vitro tumors 

[2]. Virtual experiments and simulations give the 

opportunity to observe effects of different treatments on 

cancerous cells, and could lead to improve these treatments 

or suggest new ones [7]. For understanding the in vivo 

behavior of cancer, the fundamental challenge for 

mathematical simulation is the simplification of the 

underlying complex processes while maintaining realistic 

findings [8]. 

Classical cancer simulation needs solving complicated 

differential equations which contains time consuming 

numerical method. Therefore, we consider the concept of 

cellular automata (CA) to display complex behaviors arising 

from the interaction among simple components with local 

connectivity. 

CA may be considered as a method for modeling discrete 

dynamic systems. A CA consists of a discrete system of 

lattice sites (cells) having various initial values. These cells 

evolve in discrete time steps as each cell assumes a new state 

based on the rules i.e. the states of its local neighborhood and 

a finite number of previous time steps. The neighborhood is 

described by specifying the set of cells that are the neighbor 

of a given cell [9].  

A CA lattice may be 1-D or multi-dimensional. There are 

several possible lattices and neighborhood structures for a 2- 

D CA, i.e., for a square lattice, two types of neighborhoods 

are typically used; the generalized “Von Neumann” 

neighborhood and the “Moore” neighborhood (Figure 2) [9]. 

Square lattices with nearest neighbor interactions are 

mainly studied in the literature, but triangle and hexagonal 

lattices are also possible [9]. 

 
Figure 2.  Two kinds of neighborhoods for a central cell: Von 

Neumann (×) and Moore (●)  

 

Since CA is capable of producing complex patterns by 

applying simple rules, it is appropriate for expressing many 

features of self-organizing complex systems which have 

been applied numerous phenomena in physics, chemistry 

and biology [10]. Macroscopic tumor growth behavior may 

be modeled by primarily microscopic data [11] using CA 

concept.  

This paper is organized as follows: First, brief reviews of 

mathematical and CA models of solid tumor growth are 

presented. Then, we propose our model based on CA and 

present the simulation results for tumor progression and 

compare the simulated results with the in vivo experimental 

results and find that the two are in agreement in many 

respects. Finally, several conclusions and a discussion are 

given. 

2. Mathematical Models 

Since biological models are basically multi component 

chemical reactions, they can be modeled by systems with 

chemical reactions. With this point of view, the 

mathematical analysis used in the development of chemistry 

can be apply as a powerful tool in biological models [11, 12]. 

It has been shown that the tumor first grows 

exponentially and then level off to a linear growth [4]. Since 

avascular tumors receive nutrients (e.g., oxygen and glucose) 

by diffusion, the diameter to which they may grow is 

typically limited to several millimeters [13].  

One of the first attempts to empirically describe the time-

varying volume of a solid tumor is the Gompertz model [14, 

15]. Distinct sigmoidal growth curves seen in spheroids also 

occur in some solid tumors, prompte investigation into 

whether any appropriate sigmoidal curve could be tempered 

to describe spheroid growth including other classical 

continuum tumor growth models such as Van Bertalanffy 

and logestic family models [16]. Among them, the Gompertz 

model best fits experimental data [5] which is shown in Eq. 

(1) as 

𝑉 = 𝑉0  𝑒𝑥𝑝 ( 
𝐴

𝐵
 [1 − 𝑒𝑥𝑝(−𝐵𝑡)])             (1) 

where 𝑉0 is the volume at time 𝑡 = 0 and 𝐴 and 𝐵 are the 

constant parameters that can be fitted to comply with 

experimental data [14]. 

However, real tumors always possess much more 

complex morphology. Besides, Gompertzian growth models 

are very limited; they only capture gross features of tumor 

growth and cannot explain their underlying ‘microscopic’ 

mechanisms [14]. Moreover, they cannot predict the effect 

of chemicals on tumor morphology. 

Reaction-diffusion models are another important class of 

spatial tumor growth models [13]. A tumor growth is usually 

supposed as a wave traveling phenomenon in these models. 

This type of diffusion starts by random movement of cancer 

cells. 

Burton [17] was probably the first to propose that 

diffusion and nutrient concentration limit the growth of solid 

tumor growth. Since then, numerous models based on spatio-

temporal interactions between tumor cell populations and 

nutrients have been suggested [18]. These mathematical 

models included lots of large systems of differential 
equations in order to their special goal of modeling and the 

level of used details.  

2.1. Mathematical Models Based on CA 

Here, we particularly concentrate on tumor growth 

models proposed based on CA. We just review some of 

important ones. Some of the earliest models were proposed 

by Düchting [19], with the goal to design a model to study 

the regulation of disturbed cell renewal through the analysis 

of two competing populations of cells [10]. A two-

dimensional regular 10×10 square lattice with a Von 

Neumann neighborhood is used in this model. Each lattice 

site corresponds to a biological cell; and with some 

deterministic and local transition rules can survive, die or 

proliferate. If a cell dies, the lattice site becomes empty. The 

model suffers from the small computational power existing 
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at that time, which limited the lattice size. Although, 

scientists present an update to this model with enlarging the 

lattice to 100×100 sites and introducing extended rules [10]. 

Qi et al. [20] tried to explain the Gompertz growth curve 

which characterizes the growth behavior of some tumors by 

using a 2-D regular square lattice represents the tissue. This 
model contains four cell types (alive tumor cells, dead tumor 

cells, normal cells, and an immune cell interacting with a 

cancer cell) with probabilistic rules. Cells can proliferate, 

interact with the immune system and dissolve. One 

disadvantage of this model is that the dissolution of cells 

does not mimic real biological behavior, since dead tumor 

cells tend to accumulate, forming a necrotic core [10]. 

A brain tumor (GBM) growth model with a 3-D Voronoi 

lattice (see Figure 3) as the tissue was proposed in 2000 by 

Kansal et al. [21] in order to reproduce the macroscopic 

structure of a tumor arising from microscopic processes [10]. 

Each lattice site in this model corresponds to several 

biological cells. In Figure 3, the inner gray region is 

composed of necrotic tissue. The cross-hatched layer is 

composed of living, quiescent (non-proliferative) cells [14]. 

The authors assume three cell types corresponding to the 

possible types of malignant cells including the proliferating 

cells, quiescent cells and necrotic cells. Non-cancerous cells 

correspond to empty sites of the lattice [10]. The ability of 

cells to divide is treated by redefining the transition between 

dividing and non-dividing cells, as the cells attempt to 

divide, they will search for sufficient space for the new cell, 

beginning with its neighbors and expanding outwards until 
they find an empty cell or nothing is found within the 

proliferation radius. If the cell attempts to divide but cannot 

find space it is turned into a non-proliferative cell [21].  

 

    
(a) 

 
(b) 

Figure 3.  (a) A more representative section of the lattice, with the 

variable density of sites evident,  (b) A cross-section of an 
idealized solid tumor which is used in this model 

 

As the tumor grows, it becomes more difficult for 

nutrients to reach the core or center of the spheroid since the 

outer cells tend to consume these nutrients first [18]. 

Therefore, cells near the core (in the middle layer) can 

become so deficient that they lose their ability to be 

proliferative and enter the quiescent stage. Quiescent (non-

proliferative) cells are still alive, and can recover with 

sufficient nutrients [18]. Moreover, the inner core which 

radius is a function of time in this model is composed of 

necrotic cells. Since these cells are too far from the nutrients, 

they are death. The outer shell contains active (proliferate) 

tumor cells [2]. Proliferative tumor cell is the only type of 

cells that can cooperate in mitosis. 

This model is able to grow from a very small size of roughly 

1000 real cells through to a fully developed tumor with 1011 

cells [21]. This number of cells requires great computational 

power and the simulations were run in an IBM SP2 parallel 

computer [3]. Torquato later expands this model in 2011 

[14]. Figure 4 exhibits a cut-away view of a simulated tumor 

generated from the minimalist CA algorithm [14]. The inner 

necrotic core is not depicted in this view. The yellow (light 

gray) region is comprised of non-proliferative cells and the 

red (dark gray) shell depicts the proliferative cells. 

 

Figure 4.  A cut-away view of a simulated tumor generated from 

the minimalist CA algorithm [14].  

 

Another lattice gas cellular automata (LGCA) model of 

avascular tumor growth with a two-dimensional regular 

square lattice of 200×200 sites and a von Neumann 

neighborhood represents the tissue was proposed by 

Dormann and Deutsch [22]. Each lattice site can 

accommodate two types of cells -tumor or necrotic cells- that 

have an orientation expressed by one resting channel (c5) 

and four velocity channels (c1-c4). Cells can be quiescent, 

proliferate, die or become necrotic with given probabilities. 

The probabilities of mitosis, necrosis and apoptosis depend 

on nutrient concentration and local cell density. Besides, the 

chemotactic signal produced by necrotic material attracts 

cancer cells [10]. An example of a cell configuration at a 

lattice node r, is depicted in Figure 5. The dark gray filled 

circle and the light gray filled circle denote the presence of a 
tumor and a necrotic cell, respectively [10, 20]. 

 

 
Figure 5.   Example of a cell configuration at a lattice node r 
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Ghaemi and Sahrokhi [6] used combination of the LGCA 

and Cellular Potts Model (CPM) according to Dormann and 

Deutsch’s previous model for simulating tumor growth. 

Later, Ghaemi et al. [3] had considered the effect of nutrient 

in the tumor growth in order to improve the precision of the 

model. In addition, they used a simple method for the 

diffusion step to simplify the model. Therefore, they 

proposed probabilistic cellular automata on a square lattice 

for simulating the dynamic of cancer growth in a reaction-

diffusion frame. Each cancerous cell can proliferate, be 

quiescent, or die due to apoptosis or necrosis phenomenon in 

the reaction step. Moreover, in the reaction step, the three-

state Potts model is used for calculating the probabilities [6].  

Reis et al. [4] proposed a two-dimensional stochastic CA 

model to describe avascular solid tumor growth, taking into 

account both the competition between cancer cells and 

normal cells for nutrients and/or space and a time-dependent 

proliferation of cancer cells. A Moore neighborhood with a 

radius of one and four type of cells including empty site (ES), 

normal cell (NoC), cancer cell (CC) and necrotic tumor cell 

(NeC) was used. They assumed that the nutrients are 

uniformly available over the lattice, and introduced growth 

potential of normal (Pnoc) and cancer (Pcc) cells to change the 
states of each cell. They also considered the probabilities of 

die due to drug injections in normal and cancer cells by pdrugn 

and pdrugc, respectively. 

3. Model Proposal 

As we mentioned before, in order to propose a CA model 

we should introduce its properties (lattice, cell’s states, 

neighborhood, rules, and initial values) one by one. Besides, we 

assume the growth starts out from a few cells, passes through a 

multicellular tumor spheroid (MTS) stage (Figure 3(b)) and 

proceeds to the macroscopic stages. Some of the assumptions 

used in this article are given in the following. 

3.1. Lattice 

Here, we propose a probabilistic two-dimensional (L×L) CA 

model. Besides, we choose a square lattice- the lattice represents 

a tissue sample- for simplicity. 

3.2. State Cells 

Each site (i,j) of the lattice represents some biological cells. 

The model is composed of six cell population including normal 

(healthy), proliferative (active) tumor, non-proliferative 

(quiescent) tumor, necrotic, immune, and dead cells due to the 

interaction between host immune cells and tumor cells. We 

briefly will mention them as Em or N, PT, NT, Ne, E, D 

respectively. In fact, these kind of dead cells because of immune 

system is considered different from necrotic cells, since necrotic 

cells cannot digest and solve into the microenvironment. 

Although dead cells because of the interaction between tumor 

cells and immune cells can change their state into an empty 

place/or a normal cell since they can digest.  

The state of site (i,j) of the lattice in our CA model is 

depicted by 𝑆𝑖,𝑗.  
 

  𝑆𝑖,𝑗 =  

{
 
 

 
 
0              empty space or normal cell
1                     proliferative cancer cell
2                                          Immune Cell
3                             Dead cause of CTLs
4       non − proliferative cancer cell 
5                                           necrotic cell

 

             (2) 

 

It should be noted that only PT cells can divide. Besides, 

immune cells can only fight with PT cells.  

Since the immune system plays an important role in the 

growth of avascular tumors, we decided to apply it as an item 

in our model. Therefore, we consider tumor-immune 

interaction in our proposed model.  

Cytotoxic T lymphocytes (CTLs) infiltrate the tumor and 

induce apoptosis in the target tumor cells [23]. Depending on 
the cytokines and other signals presented in the tumor 

microenvironment, recruited immune cells will either form a 

pro-tumor immunity or an anti-tumor immunity that we 

show it stochastically here. 

Cytotoxic T cells destroy virally infected cells and tumor 

cells. They recognize specific antigens to respond to an 

infection whereas Natural Killer (NK) cells [24] are innate 

response and do not rely on antigen. Their functionality is 

similar enough, but the major difference is that the T cells 

recognize antigens and NK cells do not. That is to say NK 

cells are the innate defense while cytotoxic T cells are cell-

mediated and more specific. Therefore, here we consider 

cytotoxic T cells in our model. 

3.3. Neighborhood 

We use Moore neighborhood with a radius of one.  

3.4. Rule 

3.4.1.  For tumor cells 

As lots of models [3, 21], we assume that the nutrients 

are uniformly available over the lattice. In this respect, lack 

of nutrients is represented by lack of space in our model. 

Moreover, we consider a multi-cell spheroid model consists 

of an outer shell of PT cells, an inner layer of NT cells which 
are dormant but viable, and a central core of necrotic 

material. 

Each PT cell can proliferate by probability of division p 

which varies with time and position. Note that, we use an 

additional parameter - maximum tumor extent (Rmax) - to 
ensure the results of the model fit Gompertz curve. 

Therefore, the division probability in the radii greater than 

Rmax is zero and the tumor stops growing because of lack of 

nutrients. So, it reflects the effects of mechanical 

confinement pressure. The probability of p is obtained by the 

Eq. (3) [21]. 

0

max

(1 )
r

p p
R

 

                    

(3) 

where, 0p  is the base probability of division, and r reflects 

the location of the dividing cell.  

PT cells are checked to see if they will attempt to divide. 
In this case, it should assure that there is an empty place. If 

there is at least one empty or normal neighbor, PT cell should 

choose one by probability r1 and it will divide. Therefore, 

one of the daughter cells will remain in the same position of 

http://en.wikipedia.org/wiki/Cytotoxic_T_cell
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the parent. The other one will place in that empty or normal 

neighbor.  

As the tumor grows, it will shape as a multi-cell spheroid. 

Therefore, we consider a rim of PT cells layer (in the external 

part of MTS) with a thickness of δp which is obtained using 

the Eq. (4) [21]. 
 

 

 δP= b Rt
2/3                (4) 

 

where b is a constant parameter, and Rt is the average radius 
of the tumor calculating by obtaining the external edge of the 

tumor.  

If a PT cell attempts to divide but cannot find empty 

space it is turned into a NT cell. Therefore, the state of cell 

will change to 4.  

Besides, the thickness of the middle layer in MTS is 

calculated based on Eq. (5) [21]. 

 

 δn= a Rt
2/3                         (5) 

where a is a constant parameter, and Rt is as mentioned 

before. We also consider the radius of the inner core 

(necrotic layer) Rn - which is a function of time – that can be 

calculated according to the Eq. (6) [21]. 

 

Rn =Rt – (δn + δp)          (6) 

In conclusion, if an empty (non-tumorous) space is found 

in a distance less than δp, a PT cell can divide. Therefore, the 

healthy cell in the empty place is turned into a PT cell. 

Otherwise, the PT cell is turned to NT cell. 

Moreover, if the radius of a NT cell is less than Rn (and a 

distance more than δn + δp from the tumor’s edge), it will 

turn to a necrotic cell because of lack of nutrition. So, its state 
will change to 5. Besides, Ne cells accumulate in the inner 

part of the tumor and will not change to any other types of 

cells. They also will not digest in the encounter of immune 

system. 

This process repeated during time iterations and the type 

of each cell is updated synchronously.  

Figure 6 shows the block diagram of the mode with the 

general framework, and the change of states for the 

subroutines. 

3.4.2. For immune cells 

Three kinds of cells’ actions have been considered in this 

paper. They are respectively cell motion, cell proliferative 

and cell competition between three kinds of different 

population cells; tumor cells, normal cells and immune cells. 

Moreover, there are two kinds of interactions in the model 

between normal cells and tumor cells, and between tumor 

cells and immune cells. Here, the second one will be 

explained, since the first one was represented before.  

We mentioned that we have immune (E) cells rather than 

normal and tumorous cells. E cells can move randomly in our 

model (we consider the existence of immune cells by 

probability of k2). If an E cell conflict a PT cell, some 

situation will happen. The PT cell may die due to cytotoxic 

T cells (CTLs) by probability k3 and its state will change to 

3 which is an unstable state. Then, a dead cell due to CTLs 

may turn its state to a normal cell with the probability k4. PT 

cell also can survive and maintain its state. 

Otherwise, the immune cell will die and become an 

empty place. In this case its state will turn to 0.  

 
Figure 6. Block diagram of the rules of the model for cancer cells 

3.5. Initial Conditions 

First, we consider whole cells of the tissue as normal with 

state 0. Then, at the initial condition (t = 0); the cells within 

a fixed initial radius of the center of the lattice are designated 

proliferative. Therefore, their state changes from 0 to 1. All 

other cells are supposed as non-tumorous. This was taken 

from the center of the lattice to ensure better visualization. 

Besides, we assume some cells of the lattice as immune cells 

randomly and change their state to 2. Later, we will discuss 

the results of the simulation both with and without 

consideration of immune cells. We also report our results by 

considering a=0.2, b=0.11, Rmax=37.5 in the model. The a 

and b parameters have been chosen to give a growth history 

that quantitatively fits the test case. 

4. Results 

First, we simulate the model without considering any 

immune cell (i.e. k2=0). Other probabilities and parameters 

are L=100, and p0=0.7. 

Figure 7(a) shows the rate of number of necrotic, cancer and 

immune cells during simulation time iteration. While the 

effect of immune cells is not considered. As it can be seen, 

the number of cancer cells increase over time, follow the 

Gompertz model, and reach a limit of 500 cells. While the 

number of necrotic cells increase agressively and reach 3000 

cells during simulation. Besides, the growth of the tumor can 

be followed graphically over time in Figure 7(b). The light-

blue outer region is comprised of proliferating cells, the 

light-red region is non-proliferative cells and the dark-red 

region is necrotic cells. The scales are in millimeters. In fact, 
It is suggested to observe central cross-sections of the tumor 

as an output of our simulation to graphically follow the 

growth of the tumor over time. The numbers on the right 
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color column in Figures 7 and 8 show the states of the cells 

as we explained in Eq. (2). It depicts that necrotic cells are 

labeled with dark-red, non-proliferative tumorous cells with 

light-red, proliferative tumor cells with light-blue and 

normal cells with dark-blue. 
 

  

 
(a)       

  
(b) 

Figure 7. (a) The number of necrotic, cancer, and immune cells 

during iteration without any immune cell, (b) Snapshot of 

simulated tumor growth without any immune cell 

Figure 8 shows the same outputs as Figure 7.  The only 

difference here is that the effect of immune cells has been 

considered in Figure 8. It seems that the dynamic of the 

changes of the number of immune cells follows the changes 
in the number of tumor cells over time.  

Comparing Figures 7 and 8, entering immune cells in the 

system can reduce tumor cells. As we expect, it can be seen 

that the max cancer cells in a system with immune cells is 

less than the same ones in a system without E cells. 

Moreover, it seems that this result is completely the same as 

the results reported in [21]. Besides, the graphical growth of 

the tumor with immune cells is less symmetric than the same 

one in Figure 7. Moreover, it seems immune cells have 

important impact on tumor invasion and it is compatable 

with an increasing number of studies have suggested that 

aberrant infiltration of immune cells into tumor or normal 

tissues may promote tumor progression, invasion, and 

metastasis [25].  

Table 1 lists the Parameters 

estimated from fitting the Gompertz model (Eq. (1)) to the 

number of the PT cells in the model with (w)/without (w.o.) 

considering immune system, and the E cells. The root-mean-

square error (RMSE) is used to evaluate the model fit.  

 

 
(a) 

   
(b) 

Figure 8. (a) The number of necrotic, cancer, and immune cells 

during iteration with adding immune cell in the model (k2=0.1), 

(b) Snapshot of simulated tumor growth with considering immune 

cell in the model by setting k2=0.1, k3=0.15, k4=0.35 
 

 
Table 1.  Parameters estimated from fitting the Gompertz model 

to the number of PT, and E cells 

Cell type 𝑽𝟎  𝑨 𝑩 RMSE (95%) 

PT (w.o.) 18.13 0.1267 0.03982 9.403 

PT (w) 7.682 0.2281 0.06373 13.4 
E 1.974 0.2492 0.05452 13.52 

 
Figure 9 shows the growth curves of  our result in the 

presence of immune cells comparison with a set of 

experimental data [26]. The number of tumor cells are 

normalized for simplicity and each time step in our 

simulation is considered as 3 hours. Although our results are 

not the best fitting curve for experimental data, they still 

show the same dynamic.  The circles are experimental data 

for EMT6/Ro [26]. While, * indicates the result of the 

present model. 
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Figure 9. The number of tumor cells over time 

Moreover, in Figure 10, the results of the simulation are 

compared with available experimental data [14] for an 
untreated GBM tumor from medical literature. The 

parameters compared are growth fraction (the ratio of the 

number of proliferative cells to the whole tumorous cells), 

and necrotic fraction (the ratio of the number of necrotic cells 

to the whole tumorous cells). These data are medically used 

to determine a tumor’s malignancy and the prognosis for its 

future growth. Since the determination of the exact time of a 

tumor growth beginning is too difficult, the medical data are 

listed at fixed radii.  

 

 

 
 

Figure 10. Comparison of Growth fraction (Gf) and Necrotic 

fraction (Nf) of experimental data [14] and simulation results with 

and without considering immune system effects (Sim 1 and Sim 2, 

respectively). Sim 1: p0=0.4, Sim 2: p=0.5, k2=0.1, k3=0.15, 

k4=0.15 

It is obvious that adding immune system in the model 

increases the time of run although it considers more reality 

rather than previous researches. The growth and necrotic 

fractions of the model in the detect lesion stage (Rt=5 mm) 

are approximately the same in both simulations with and 
without immune system consideration. The growth fraction 

of the simulation without involving immune system in the 

diagnosis stage (Rt=18.5 mm) is closer to the value of 

experimental reports. Although, this is reverse in the dead 

stage (Rt=25 mm).  

The necrotic fraction of the model in all stages is 

approximately the same for both simulations. It arises from 
the fact that we consider the necrotic radius by equation 6 

which is only related to parameters a, b, and Rt. Moreover, 

the radius doubling time in both simulations are almost the 

same. 

Besides, as we supposed by increasing p0, the time of 

simulation will reduce but it will ruin the growth and necrotic 
fractions. Therefore, we should compromise the value of p0 

to obtain appropriate values for output parameters to match 

experimental results. It can be comprehended from Eq. (3)  

that growth fraction is directly related to p0 and the results 

confirm it as well. Moreover, it is obvious that growth 

fraction should be less in the case of interring immune 

system in each stage (Rt=5, 18.5, or 25 mm) of the model. It 

can be seen that by considering immune system the values of 

growth and necrotic fraction are much closer to the 

experimental results, except in diagnosis stage. Besides, the 

values of radius doubling time in the death stage increases in 

this case. It also seems that in a model with k2=0, the value 

of p0 should be reduced to gain the same results of growth 

and necrotic fraction in a model with involving immune 

system effects. 

5. Conclusions 

Mathematical models and computer simulations can give 

researchers opportunities to understand the dynamics of 

formation and cancer growth. This can help them to find new 

prevention and treatment solutions. In this article, we 

introduced a new stochastic CA model of solid tumor growth 

by considering immune system effects. We mentioned 

comprehensively each property of CA to propose our model.  

The effects of varying the input parameters of the model 

in order to match previous experimental results are done. 

Besides, the effect of adding the immune system to the model 

is discussed. The comparison of our model with and without 

involving immune system with experimental results is 

discussed. 

Results show that this model adequately fits tentative 

results reported by scientists. Although considering immune 

system in the model will rise the simulation time, it is 

recommended since it adds more physiological details to the 

model. Besides, the discrete nature of the model enables us 
to directly simulate more complex physiological situations 

with only minor alterations. We also observe the effect of 

immune cells on tumor invation and metastasis, as reported 

by scientists. 

Since immunotherapy is an important type of tumor 
treatment that uses our body’s own immune system to help 

fight cancer, adding the effects of immune system to the 

model can help researchers study immunotherapy better. 

Moreover, the model can be developed to consider 

metastasis which is an important phenomenon in malignant 

tumors. The future plan of authors is extending the model to 

study it under the effect of therapy. 
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